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Abstract—Heart rate (HR) monitoring using photoplethysmog-
raphy (PPG) is a promising feature in modern wearable devices.
PPG is easily contaminated by motion artifacts (MA), hindering
estimation of HR. For quasi-periodic motions, previous works
generally focused on a few specific motions, such as walking
and fast running. However, they may not work well for many
different quasi-periodic motions where MA are very complex.
In this paper, a robust HR monitoring scheme for different
quasi-periodic motions using wrist-type PPG is proposed, which
consists of dictionary learning for signal characteristics learning,
human motion recognition for the current motion recognition and
dictionary selection, sparse representation-based MA elimination
for denoising, and spectral peak tracking for HR-related spectral
peak tracking. The proposed scheme is robust to MA caused
by different motions and has high accuracy. Experiments on six
common quasi-periodic motions showed that the average absolute
error of heart rate estimation was 2.40 beat per minute, and also
showed that the proposed method is more robust than some state-
of-the-art approaches for different motions.

Index Terms—Heart rate monitoring, photoplethysmography
(PPG), motion artifacts, sparse representation, wearable sensors.

I. INTRODUCTION

HEART rate (HR) monitoring based on modern wearable
devices is of interest due to its useful features in

controlling training load or health monitoring during phys-
ical exercise. Photoplethysmography (PPG) signals [1] have
shown its potential in HR monitoring during physical exercise
because of its simpler hardware implementation and lower
cost over traditional Electrocardiograph (ECG) signals [2].
However, PPG is susceptible to motion artifacts (MA) [3],
making HR monitoring based on PPG a difficult problem.

Some methods, which were proposed for small motions,
have been investigated. One is independent component analy-
sis (ICA) [4], [5]. However, statistical independence (the key
assumption in ICA) does not hold in PPG signals contaminated
by MA [6], resulting in unsatisfactory performance of MA
elimination. Another method is adaptive filtering (used for
small motions) [7], [8]. But adaptive filtering is sensitive to
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reference signal. Since these techniques were proposed for
some small motions, such as finger movements [5], walking
[7] and slow running [8], where MA was not strong, these
techniques may not work well when monitoring HR during
physical exercise [3].

Other techniques, which were proposed for strong motions
in physical exercise, were recently investigated, such as adap-
tive filtering (used for strong motions in physical exercise)
[9], [10], [11], [12], empirical mode decomposition (EMD)
[13], [14], singular spectrum analysis (SSA) [3], spectrum
subtraction (SS) [15], [16], winer filtering [17] and particle
filter [18]. Most of them utilized acceleration signals as the
reference signals of MA, showing good performance in some
scenarios. However, these techniques only focused on a few
specific quasi-periodic motions, such as walking and fast
running. For specific motions, these techniques can adjust their
parameters to work well. However, the adjusted parameters
may not work well for different types of intensive physical
exercises in the real world including many different quasi-
periodic motions, such as elliptical trainer, where the hand
movements have different directions which may result in more
complex MA.

In this paper, a robust HR monitoring scheme using wrist-
type PPG during different types of quasi-periodic motions
is proposed, being composed of four key parts: dictionary
learning, human motion recognition, sparse representation-
based MA elimination, and spectral peak tracking. Dictionary
learning aims to obtain different PPG and MA dictionaries to
represent PPG signals and different MAs caused by different
quasi-periodic motions, where one kind of motion corresponds
to one PPG dictionary and one MA dictionary. Human mo-
tion recognition aims to recognize the current motion and
thereby select the corresponding PPG and MA dictionaries.
Using the selected PPG dictionary and MA dictionary, sparse
representation-based MA elimination aims to eliminate MA
caused by the current motion. Using the cleansed PPG signal
after sparse representation, spectral peak tracking aims to
locate the HR-related spectral peak. Experiments on many
common quasi-periodic motions showed that the proposed
HR monitoring approach has satisfactory accuracy, and is
robust to different MAs caused by different strong quasi-
periodic motions. The detailed contributions of this paper are
as follows:

• For intensive physical exercises in the real world, there
are many different strong quasi-periodic motions, such
as walking, fast running, beckoning, swing arm, elliptical
trainer and deep keen bend, leading to very strong and
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complex MA. To monitor HR during intensive physical
exercises, it is necessary to design a robust HR moni-
toring technique for many different strong quasi-periodic
motions. At present, for quasi-periodic motions, most
HR monitoring techniques only considered a few specific
motions, such as walking and fast running. However, they
may not work well during many other different quasi-
periodic motions which may cause very complex MA.
To overcome the above issue, a robust HR monitoring
technique for many different quasi-periodic motions using
PPG is proposed in this paper, which is more suitable for
practical application scenario.

• To eliminate different MAs caused by different strong
quasi-periodic motions, we propose combining human
motion recognition and dictionary learning-based sparse
representation. Human motion recognition can recognize
the motion that the current subject is performing, and then
automatically select the dictionaries corresponding to the
motion. Using the corresponding dictionaries, dictionary
learning-based sparse representation can represent and
separate PPG and MA caused by this motion, and then
can obtain the clean PPG signal.

• The performance on different types of intensive phys-
ical exercises being composed of six typical strong
quasi-periodic motions (walking, fast running, beckoning,
swing arm, elliptical trainer and deep keen bend) related
to hand movements were shown in our experiments,
because the main source of MA is from hand movements
[15]. Experiments on the six typical motions proved that
the proposed approach can achieve an accurate estimate
of HR, and it is also robust to different MAs caused
by different quasi-periodic motions in different types of
physical exercises, indicating that the proposed approach
has potential to be used in HR computation of wearable
sensors during physical exercises.

II. MOTIVATION

PPG recorded during physical exercise is easily contam-
inated by MA. One major source of MA is the voluntary
or involuntary subject movement which can make the gap
(between the sensor and the skin) easily enlarged by hand
movements during physical exercises [15]. Removal of MA
can not be easily performed because of the likely spectral and
temporal similarity between PPG and MA [19]. Acceleration
signals are shown to be powerful in eliminating MA because
of the strong correlation between acceleration signals and
MA [20]. There are mainly three kinds of methods using
acceleration signals as the reference signals of MA, as follows.

One kind of technique is signal decomposition assisted by
acceleration signals [3], [14], [21]. For example, in [3], a
method using singular spectrum analysis (SSA) assisted by
acceleration signals was proposed to eliminate MA. First, SSA
is exploited to decompose a raw PPG into many components.
Then a spectral peak associated with MA in a component is
identified by checking whether there is also a spectral peak
in the spectrum of acceleration signals at the same frequency
bin.

Another kind of technique is spectrum subtraction (SS)
assisted by acceleration signals [14], [15], [22]. It removed
MA by subtracting the spectrum (calculated by Periodogram)
of the acceleration signal from the spectrum of the PPG signal.

Adaptive noise cancellation (ANC) assisted by acceleration
signals was also exploited to remove MA [12], [17]. For
example, one work that we recently proposed in [12] used
nonlinear adaptive filtering with acceleration signals being the
reference signals of MA. However, ANC is sensitive to the
predefined reference signal. If the predefined reference signal
was not chosen properly, the performance of MA elimination
may be affected. To overcome this issue, another reference
[24] proposed using ANC with four predefined reference
signals, instead of only one predefined reference signal.

The three kinds of techniques mentioned above obtained
satisfactory results to some extent. Unfortunately, we notice
that the performance of most of these techniques were only
evaluated using specific physical exercises including a few
specific motions, such as walking and fast running. In practice,
since there are many different types of intensive physical
exercises that include many different quasi-periodic motions,
such as deep keen bend and elliptical trainer, we have to
cope with HR monitoring under many different quasi-periodic
motions, where hand movements have different directions and
thus cause more complex MA.

To visually see different quasi-periodic motions, an example
in Fig. 1 shows segments of three-axis acceleration signals
from three different quasi-periodic motions: fast running,
elliptical trainer and deep keen bend. The example shows
twofold information.

• From Fig. 1(a), Fig. 1(c) and Fig. 1(e) where the signal
segments are from one subject, (or Fig. 1(b), Fig. 1(d)
and Fig. 1(f) where the signal segments are from another
subject), we can see that the acceleration signals from
different motions have different characteristics because of
different directions of hand movements, which may cause
different characteristics of MA in PPG signals recorded
by different motions. It indicates that MA caused by dif-
ferent motions are different and very complex, resulting
in that it is difficult to eliminate MA caused by different
motions.

• From the acceleration signals of fast running (Fig. 1(a)
and Fig. 1(b)) from two different subjects, we can see that
the acceleration signals from the same kind of motion
have similar characteristics. In other words, the acceler-
ation signals from the same kind of motion are regular.
Since acceleration signals have strong correlation with
MA [20], MA from the same kind of motion may have
similar characteristics. If the characteristics of MA caused
by one kind of quasi-periodic motion can be learned, MA
caused by this kind of motion can be eliminated.

This example motivates using sparse representation based
on dictionary learning to eliminate different MAs caused by
different motions. Since the acceleration signals from the same
kind of quasi-periodic motion are regular and are sparse in cer-
tain transform domain, the characteristics of MA, which have
strong correlation with acceleration signals, from the same
kind of quasi-periodic motion can be learned by dictionary
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(a) Segments of one subject from fast running.
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(b) Segments of another subject from fast running.
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(c) Segments of one subject from elliptical trainer.
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(d) Segments of another subject from elliptical trainer.
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(e) Segments of one subject from deep keen bend.
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(f) Segments of another subject from deep keen bend.

Fig. 1: An example showing segments of simultaneously recorded raw acceleration signals from three different quasi-periodic
motions: fast running, elliptical trainer and deep keen bend. Fig. 1(a) and Fig. 1(b) show the signals recorded during fast
running from two different subjects. Fig. 1(c) and Fig. 1(d) show the signals recorded during elliptical trainer from two
different subjects. Fig. 1(e) and Fig. 1(f) show the signals recorded during deep keen bend from two different subjects.

learning. In other words, dictionary learning can be used to
learn a MA dictionary for representing MA caused by this kind
of motion through the acceleration signals. Then different MA
dictionaries can be learned through the acceleration signals
from different motions, used for representing different MAs
caused by different motions. Similarly, different PPG dictio-
naries can be learned through clean PPG signals from different
motions, used for representing PPG recorded from different
motions. Using the learned PPG and MA dictionaries, sparse
representation can remove different MAs caused by different
motions. Based on the proposed MA elimination method, we
can effectively eliminate different MAs caused by different
motions.

III. PROPOSED HEART RATE MONITORING APPROACH

The proposed HR monitoring approach is composed of four
key parts: dictionary learning for learning different PPG and
MA dictionaries, human motion recognition used to recognize
which kind of motion one subject is performing and thereby
selecting the corresponding dictionaries, sparse representation-
based MA elimination for eliminating MA with the selected
PPG dictionary and MA dictionary, and spectral peak tracking
used to locate the spectral of HR value via a algorithm
we proposed in [12]. The flowchart of the proposed HR
monitoring approach is shown in Fig. 2.

Before starting the proposed HR monitoring approach, we
exploit a preprocessing step called band passing to remove
noise and MA outside of the frequency band of interest. The
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proposed HR monitoring approach uses raw PPG signals and
simultaneously recorded acceleration signals. A time window
of 8 seconds is sliding on the signals with incremental step of
2 seconds. The proposed HR monitoring approach estimates
HR in each time window.
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Fig. 2: The flowchart of the proposed HR monitoring ap-
proach.

A. Dictionary learning

The goal of this part is to learn the PPG dictionaries and the
MA dictionaries corresponding to different motions, preparing
for the part of sparse representation-based MA elimination.
Predefined transform basis and dictionary learning are two
main methods to obtain dictionary. Dictionary learning is
used in this paper because it has encouraging potential to
provide a sparser representation compared with predefined
transform basis [25], [26]. For PPG signals used for arterial
blood pressure estimation, dictionary learning was adopted
in [27]. The reference [27] proved that the characteristic of
PPG signals can be learned by dictionary learning. In our
work, dictionary learning is implemented in feature transform
domain in order to make PPG and acceleration signals (the
reference signals of MA) sparse. Short-time Fourier transform
(STFT) is used because STFT is simple and easy to implement.

For dictionary learning, training data are required. Specifi-
cally, clean PPG signals from one motion are required to learn
the PPG dictionary of one motion, and acceleration signals
from one motion are required to learn the MA dictionary of
one motion. Acceleration signals for one motion are easily to
be obtained, whereas clean PPG signals for one motion are
difficult to obtain because the PPG signals recorded during
motions often contain MA. There are mainly two ways to get
clean PPG signals for one motion. The first way is to use the
signals after being processed by some other MA elimination
methods. For example, one MA elimination method can be
selected to process the raw PPG signals used for training; if
the signals after being processed by the method are clean, the
signals after being processed by the method would constitute
training data. The second way is to select the PPG signals
being approximately clean from some other motions. For ex-
ample, the approximately clean PPG signals from one motion
(denoted by Motion1) can be used as the training signals of
another motion (denoted by Motion2). At this time, the HR
values of the signals from Motion1 should be similar to the HR
values of the signals from Motion2. If they have similar HR
values, the clean PPG signals for the two motions are similar,

and thus the approximately clean PPG signals from Motion1
can be used. In our experiments, the first way is adopted.
Specifically, one method proposed in our previous work [12]
is used to process the raw PPG signals used for training.

By means of dictionary learning, a PPG dictionary R̃ (used
to represent PPG signals) can be learned from a training set S̃
which is assemble of STFT magnitudes of clean PPG signals
from many time windows. Also, via dictionary learning, a MA
dictionary R (used to represent the MA caused by certain kind
of quasi-periodic motion) can be learned from a training set S
which is assemble of STFT magnitudes of acceleration signals
corresponding to this motion from many time windows.
R̃ can be obtained by solving the following optimization

problem:

min
R̃,C̃

∥∥∥S̃− R̃C̃
∥∥∥2

F
s.t. ∀i, ‖c̃i‖0 ≤ τ, (1)

where ‖·‖F denotes the Frobenius norm, ‖∗‖0 denotes the
number of elements which are not zero. τ denotes a small
positive integer. In equation(1), the training set S̃ ∈ RD×W

(being assemble of training samples) stands for {s̃i}Wi=1. Here
D denotes the length of one training sample, and W denotes
the number of training samples. A dictionary R̃ ∈ RD×M

stands for {r̃i}Mi=1 (where r̃i denotes one atom), and a coding
matrix C̃ ∈ RM×W stands for {c̃i}

W
i=1. Here M denotes the

number of atoms in one dictionary.
R can be obtained by solving the following optimization

problem:

min
R,C
‖S−RC‖2F s.t. ∀i, ‖ci‖0 ≤ ρ, (2)

where ‖·‖F denotes the Frobenius norm, ρ denotes a small
positive integer, the training set S ∈ RD×N stands for {si}Ni=1.
Here D denotes the length of one training sample, and N
denotes the number of training samples. A dictionary R ∈
RD×L stands for {ri}Li=1, and a coding matrix C ∈ RL×N

stand for {ci}Ni=1. Here L denotes the number of atoms in one
dictionary.

The two constrained problems expressed by equation (1)
and (2) can be solved by many algorithms, such as method
of optimal directions (MOD) [28], [30] and k - singular value
decomposition (K-SVD) [26]. For illustration, we chose MOD
in our experiments. Since equation (1) and (2) are two similar
problems, we only describe how to solve equation (2) using
MOD as follows.

To update R and C iteratively, MOD uses a two phase
approach: sparse coding stage and dictionary update stage. The
two steps of MOD are as follows.

In sparse coding stage, R is fixed. Any pursuit algorithm,
such as orthogonal matching pursuit (OMP) [31], can be used
to compute each column ci by approximating the solution of

min
ci

{
‖si −Rci‖22

}
s.t. ‖ci‖0 ≤ ρ. (3)

where ci stands for one column in C, si stands for one column
in S, and ρ denotes the max number of coefficients for each
signal si.
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After the sparse coding stage, ci for each example si is
known. Thus errors ei = si−Rci can be obtained. The overall
representation mean square error can be represented by

‖E‖2F = ‖e1, e2, . . . , eN‖2F = ‖S−RC‖2F . (4)

where ‖·‖F denotes the Frobenius norm.
In dictionary update stage, C is fixed. We can find an update

to R such that the above error (represented by equation(4))
is minimized. R can be obtained by taking the derivative of
equation(4) with respect to R, and the obtained R is

R = SC · (CCT)−1. (5)

Repeat the sparse coding stage and the dictionary update
stage until convergence. Finally, MOD can produce a PPG
dictionary R̃ that approximates S̃ sparsely and accurately.
Similarly, MOD can produce a MA dictionary R that approx-
imates S sparsely and accurately. R̃ and R will be used in
the part of sparse representation-based MA elimination.

B. Human motion recognition

The purpose of this part is to use acceleration signals to
recognize which motion one subject is performing, in order to
automatically choose a PPG dictionary and a MA dictionary
corresponding to this motion. One commonly-used algorithm
is XGBoost [32], which is a scalable end-to-end tree boosting
system. Since XGBoost has achieved state-of-the-art results
on many machine learning challenges [32], it is selected as
the classifier in our experiments.

Note that, to train XGBoost-based classifier, training data
(acceleration signals from many time windows) are required.
When collecting training data, like the part of dictionary learn-
ing, we used the leave-one-subject-out method. Specifically,
the data from one subject in one data set were used as testing
data, while the data from the remaining subjects in one data
set were used as training data.

1) Classifier training:
Feature extraction. Before training the classifier, feature

vectors being the input of the classifier need to be extracted
from the training data. A feature vector is composed of the
features: kurtosis, skewness, energy, spectral mean, spectral
kurtosis, spectral skewness, the sum of energy for each sub-
band signal obtained by wavelet transform, the sum of the
mean for each sub-band signal, and the sum of the standard
deviation for each sub-band signal. One feature vector is
normalized so that the range of features is between -1 and
1. Finally, a lot of feature vectors are obtained, forming a
training set.

Classifier training. The training set was used to train the
XGBoost-based classifier to obtain the classifier parameters
for predicting.

2) Human motion recognition using the trained classifier:
After training the XGBoost-based classifier, this step is to

determine which kind of motion one subject is performing.
The features mentioned in the last step are extracted from a
three-axis acceleration signal in the current time window. The
features will be used as the input of the classifier, used to

recognize the motion one subject is performing in one time
window. Once the motion one subject is performing has been
recognized, the PPG and the MA dictionaries corresponding
to this motion would be selected.

C. Sparse representation-based MA elimination

In this subsection, a correlation decision is first introduced.
Correlation decision is used to determine whether the raw PPG
signal contains very strong MA. Then sparse representation-
based MA elimination is introduced.

1) Correlation decision:
This step aims to determine whether the raw PPG signal

contains very strong MA by calculating the correlation be-
tween the STFT magnitudes of the raw PPG signal and the ac-
celeration signal. If the Pearson correlation value between the
STFT magnitudes of the raw PPG signal and the acceleration
signal is not very high, the raw PPG signal does not contain
very strong MA. At this time, to avoid the disturbance of
the MA dictionary which comes from the acceleration signals,
there is no need to use the MA dictionary R.

Before the correlation decision, STFT is used to transform
the raw PPG signal and the acceleration signal after bandpass
filtering, sraw and araw, into signals in STFT magnitude
domain, expressed by

X = |STFT(sraw)| ,
A = |STFT(araw)| . (6)

where X ∈ Rm×n denotes the STFT amplitude of sraw, A ∈
Rm×n denotes the STFT amplitude of araw. m denotes a
frequency range from 0 to 5 Hz, which is selected because the
frequency of HR exists in the frequency range from 0 to 5 Hz.
n denotes the number of time windows. Here the acceleration
signal after bandpass filtering, araw, is a summation of three-
axis acceleration signals after bandpass filtering.

Then X is transformed to into a column vector, x ∈
R(m·n)×1, which is composed of the column vectors of X. A
is transformed to into a column vector, a ∈ R(m·n)×1, which
is composed of the column vectors of A. Here m · n denotes
the multiplication of m and n.

Next we measure whether the Pearson correlation value
ρcorr between x and a satisfies

|ρcorr| ≤ ∆corr, (7)

where ∆corr is a preset threshold.
If ρcorr can satisfy (7), the raw PPG signal is identified as

a clean signal. At this time, only the PPG dictionary will be
used. This can be expressed by

D = R̃, (8)

where D denotes the dictionary that will be used in sparse
representation-based MA elimination.

If ρcorr can not satisfy (7), the raw PPG signal is identified
as a not clean signal. At this time, both the PPG dictionary
and the MA dictionary will be used. This can be expressed by

D = [R̃ R], (9)
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where D denotes the dictionary that will be used in sparse
representation-based MA elimination.

2) Sparse representation-based MA elimination:
Sparse representation-based MA elimination is to eliminate

MA in a raw PPG signal using sparse representation. Sparse
representation (using sparse as a condition) is an emerging
signal processing technique, showing great potentials in many
application fields [33], [34], [35]. PPG and acceleration signals
(the reference signals of MA) are sparse in a specific domain.
Moreover, these two kinds of signals can be well represented
by sparse representation due to the regularity of PPG and
acceleration signals (the reference signals of MA).

If one raw PPG signal contains strong MA, we assume that
the STFT magnitude of raw PPG signal, x ∈∈ R(m·n)×1,
can be approximately a sum of the STFT magnitude of clean
PPG signal, s ∈∈ R(m·n)×1, and the STFT magnitude of MA,
m ∈∈ R(m·n)×1. The assumption can be expressed by:

x = s + m. (10)

The assumption used in the paper is similar to the assumption
used in the reference [36] for speech enhancement. The
assumption used by [36] is that one raw speech signal is
approximately a sum of spectral magnitudes of clean speech
signal and noise.

The purpose of the assumption is that: if one raw PPG
signal contains strong MA, D = [R̃ R]; at this time, if
the assumption can be satisfied, the constrained problem
(introduced by the next equation (11)) of the proposed MA
elimination approach can be used to eliminate MA.

In sparse representation-based MA elimination, the aim of
sparse representation algorithm is to approximate x with low
error using linear combination of a few atoms (chosen from
dictionary D) that are correlative to x. Note that the aim of
sparse representation algorithm depends on dictionary D. If
D = R̃, the aim of sparse representation algorithm is to
approximate x with low error using linear combination of
a few atoms from R̃. If D = [R̃ R], sparse representation
algorithm aims to approximate x with low error using a sum
of a linear combination of atoms from the PPG dictionary R̃
and a linear combination of atoms from the MA dictionary R.

The constrained problem of the proposed MA elimination
approach can be represented by

min
c
‖x−Dc‖2

s.t. ‖c‖0 ≤ K
(11)

where x is the STFT magnitude of a raw PPG signal after
bandpass filtering, D is the dictionary after correlation deci-
sion (D = R̃ or D = [R̃ R]), K is a small positive integer. c
is a sparse coefficient vector. c = cr̃ or c = [cr̃ cr]T, where
cr̃ and cr are sparse coefficients corresponding to R̃ and R .

The constrained problem (11) can be solved by many
approaches, such as orthogonal matching pursuit (OMP) [31]
and basis pursuit denoising [37]. These approaches solve the
problem based on different criteria and procedures. We chose
OMP in our experiments because of its low complexity and
simple implementation [38]. OMP is a greedy algorithm used
to choose atoms from a dictionary [31].

After using OMP to solve the sparse representation problem
(9), we obtain the sparse coefficients vector c, where c = cr̃
if D = R̃, and c = [cr̃ cr]

T if D =
[
R̃ R

]
. Then

the clean speech magnitude is estimated by disregarding the
contribution from the MA dictionary, preserving only the
linear combination of PPG dictionary atoms. An estimate of
the STFT magnitude of a cleansed PPG segment, ŝ, can be
obtained by

ŝ = R̃cr̃
T, (12)

where ŝ can be transformed into a cleansed PPG signal.
The vector ŝ ∈ R(m·n)×1 is transformed into one matrix

Ŝ ∈ Rm×n, which can be used to get a cleansed PPG signal
in the time domain.

Using Ŝ, a cleansed PPG signal in the time domain can
be obtained by inverse STFT transform. Here inverse STFT
transform is used to transform the obtained signal in the STFT
magnitude domain, Ŝ, into a cleansed PPG signal in the time
domain, srecon, which will be used in spectral peak tracking.
Note that, for inverse STFT transform, the phase of the raw
PPG signal, x, is used. The process can be expressed by

srecon = ISTFT(Ŝ), (13)

where ISTFT denotes inverse STFT transform.
The process of sparse representation-based MA elimination

approach is given in Algorithm 1. In the OMP algorithm of
this process, for dictionary matrix D, the matrix with indices
of its columns in Ω is denoted by DΩ. In the OMP algorithm,
each iteration t of the while-loop consists of two steps: atom
selection and update of the coding vector. The step of atom
selection selects the atom that is most coherent to the current
residual r̂, implemented in first two lines of the while-loop.
The step of update of the coding vector sets c to the orthogonal
projection of x onto the subspace DΩ, implemented in the
third line of the while-loop. New residual is computed in the
fourth line of the while-loop.

D. Spectral peak tracking

Using the cleansed PPG signal srecon, a spectral peak track-
ing algorithm we proposed in [12] is used to get HR value.
The algorithm is performed in the spectrum f (calculated by
Periodogram) of srecon.

Before the algorithm starts, some variables are defined. Lp

is the frequency location index of HR estimated in the previous
time window. LR1 = [Lp −∆s, · · · , Lp + ∆s], where LR1 is
the range of fundamental frequency of HR, and ∆s is a small
positive integer. LR2 = [2(Lp − ∆s − 1) + 1, · · · , 2(Lp +
∆s − 1) + 1], where LR2 is the range of first-order harmonic
frequency of HR. L0

i (i = 1, 2) denotes the frequency location
indexes of two dominant peaks in LR1, and L1

i (i = 1, 2) is
from LR2. Here dominant peak denotes the spectral peak
with an amplitude larger than a threshold of the maximum
amplitude.

Depending on the variables, a harmonic pair (L0
i , L

1
j )(i, j ∈

{1, 2}) with a harmonic relation is defined. Also, one group
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Algorithm 1 Sparse representation-based MA elimination

Input: a raw PPG signal sraw and the acceleration signal after
bandpass filtering araw, the PPG dictionary R̃ and the MA
dictionary R, and a small positive integer K.

Output: a cleansed PPG signal srecon.
• Perform STFT transform for sraw and araw,

getting X and A.
X = |STFT(sraw)|.
A = |STFT(araw)|.

• Transform X and A into two vectors, x and a.
• Perform correlation decision that compute correlation

between x and a, getting the dictionary D used in
sparse representation.

D = R̃ or D =
[
R̃ R

]
.

• Perform OMP algorithm used to compute sparse
coefficient vector c.

Set Ω0 = {}, c = 0, r̂ = x, t = 0.
while ‖c‖0 ≤ K do

h = DTr̂.
Ωt+1 = Ωt ∪ {arg maxl |h(l)|}.
c =

(
DT

Ωt+1
DΩt+1

)−1

DT
Ωt+1

x.
r̂ = x−Dc.
t = t+ 1.

end while
• Get cleansed PPG signals in the STFT magnitude domain.

ŝ = R̃cr̃
T, where cr̃ (being from c) is sparse

coefficients corresponding to R̃.
• Transform ŝ into one matrix Ŝ.
• Perform inverse STFT transform for Ŝ.

srecon = ISTFT(Ŝ).

{L0
1, L

0
2,

L1
1−1
2 + 1,

L1
2−1
2 + 1} is defined. Based on the har-

monic pair and the group, three labels are defined. Label 1
mainly represents the frequency location index of a spectral
peak selected from the harmonic pair (L0

i , L
1
j )(i, j ∈ {1, 2}).

Label 2 represents the frequency location index (from the
group {L0

1, L
0
2,

L1
1−1
2 + 1,

L1
2−1
2 + 1}) that is closet to the

frequency location index of HR in the previous time window.
Label 3 represents the frequency location index of the spectral
peak of HR in the previous time window.

The algorithm mainly consists of two steps: random forest-
based classifier training and spectral peak tracking using the
trained classifier. The first step aims to train random forest-
based classifier. Based on the trained classifier, the second step
is to locate the spectral peak of HR in the spectrum f . After
the second step, if the class label of the classifier is Label l (l
= 1, 2, or 3), the frequency location index of the spectral peak
corresponding to Label l would become the frequency location
index H associated with HR in the current time window.

The frequency location index H can be transformed to HR
value through the following rule:

HR = 60 ∗ H − 1

N
fs (BPM), (14)

where fs denotes the sampling rate, BPM denotes beat per
minute, and H belongs to {1, 2, · · · , N} which are the location

indexes of N equal frequency bins being from the division of
location index of the spectrum [0, fs].

IV. DATA SETS AND PERFORMANCE INDEXES

A. Data sets

Using different types of physical exercises consisting of
many different motions, we evaluated the performance of the
proposed HR monitoring approach. In the experiments of this
paper, we showed the performance of HR estimation on six
data sets recorded under six common motions: walking, fast
running, beckoning, swing arm, elliptical trainer and deep keen
bend, which were all related to hand movements because hand
movements are the main source of MA [15]. Note that the hand
movements of these motions are from different directions,
because the hand movements in practical application scenario
are from different directions. Fig. 3 gives the sketch maps of
the six common motions: walking, fast running, beckoning,
swing arm, elliptical trainer and deep keen bend.

(a) (b) (c) (d)

(e) (f)

Fig. 3: The sketch maps of six common motions.(a) walking.
(b) fast running. (c) beckoning. (d) swing arm. (e) elliptical
trainer. (f) deep keen bend.

Note that six data sets used in this paper were recorded
during six motions. Running was recorded during walking
and fast running. Beckoning was recorded during beckoning.
Swing Arm was recorded during swing arm. Elliptical Trainer
was recorded during elliptical trainer. Deep Keen Bend was
recorded during deep keen bend. Mixture was recorded during
beckoning, swing arm and deep keen bend.

The data set (called Running) recorded during walking and
fast running was first used in [3]. It was recorded from 12
volunteers with age ranged from 18 to 35, being composed
of 12 recordings. In each recording, there is a single-channel
PPG signal, a three-axis acceleration signal and an ECG signal,
recorded simultaneously from a subject. All signals were
sampled at 125Hz. In each recording, subjects first walked
with 1-2 km/h for 0.5 minute, then ran with 6-8 km/h for 1
minute, next ran with 12-15 km/h for 1 minute, then ran with
6-8 km/h for 1 minute, next ran with 12-15 km/h for 1 minute,
and finally walked with 1-2 km/h for 0.5 minute.

The other five data sets (Beckoning, Swing Arm, Elliptical
Trainer, Deep Keen Bend and Mixture) were recorded during
beckoning, swing arm, elliptical trainer and deep keen bend.
The first four data set was from 9 volunteers with age ranged
from 18 to 35, being composed of 9 recordings. The data set
of Mixture was from 4 volunteers, consisting of 4 recordings.
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(b) A subject with the hardware.

Fig. 4: (a) The block diagram of the hardware setup for data
recording. The ECG sensor was used to obtain a three-lead
ECG: LA, RA and LL. The LA and RA were placed at left
and right chest, and LL was placed at the left lower abdomen.
To collect PPG signals, a reflective pulse oximeter sensor with
green LED was used. The PPG sensor was placed at the back
of the wrist. To collect three-axis acceleration data, ADXL345
was used. All the data from the sensors were processed by
STM32 which is a chip used for configuring ECG, PPG
and acceleration sensors. Finally, all the data from STM32
were transmitted to a host computer used for data analysis,
processing and presentation. (b) A subject with the hardware.

Each recording lasts for 4 minutes. In each recording, there is
a single-channel PPG signal, a three-axis acceleration signal
and an ECG signal, recorded simultaneously from a subject.
All signals were sampled at 125Hz. Fig. 4(a) shows the block
diagram of the hardware setup for data recording. An example
of a subject with the hardware is shown in Fig. 4(b).

The details of the other five data sets (Beckoning, Swing
Arm, Elliptical Trainer, Deep Keen Bend and Mixture) are
described as follows.

Beckoning was recorded during beckoning. In each record-
ing, subjects rested for the first and last 0.5 minutes. For
the other 3 minutes, subjects performed the movement of
beckoning. The movement of beckoning was very similar with
maneki-neko (literally meaning “beckoning cat”) which is a
common Japanese lucky figurine that depicts a cat beckoning
with an upright paw.

Swing Arm was recorded during swing arm. In each record-
ing, subjects rested for the first and last 0.5 minutes. For the
other 3 minutes, the arm wearing sensors swung fore backward
with about an angle of sixty degrees.

Elliptical Trainer was recorded during elliptical trainer. In
each recording, subjects rested for 0.5 minute, then exercised
with 4-6 km/h for 1 minute, next exercised with 7-8 km/h
for 1 minute, then exercised with 4-6 km/h for 1 minute, and
finally rested for 0.5 minute.

Deep Keen Bend was recorded during deep keen bend.
In each recording, subjects rested for the first and last 0.5
minutes. For the other 3 minutes, subjects performed the
motion of deep keen bend. Before starting, subjects stood with
the waist and back straight and with the knees being in the
same direction as the tips of the toes. Note that the movement
of squat should be natural and smooth, and hands should be
put on the knees when reaching the lowest point of squat so
that the hands can give proper support when getting up.

Mixture was recorded during a mixture of three motions
(beckoning, swing arm and deep keen bend). The data set con-
sists of four recordings. In each recording, subjects rested for
the first and last 0.5 minutes. For the other 3 minutes, subjects
performed two types of motions. For the first type, subjects
performed beckoning for 1.5 minutes, and then performed
swing arm for 1.5 minutes. For the second type, subjects
performed beckoning for 1.5 minutes, and then performed
deep keen bend for 1.5 minutes. For four recordings in
Mixture, the first two recordings belong to the first type, and
the last two recordings belong to the second type.

B. The performance indexes
1) The performance index for identifying MA intensity:
To better evaluate the performance of HR estimation, an

effective way is to see whether one approach can work well
on the data set containing strong MA. To achieve this, it is
necessary to identify MA intensity in PPG signals, namely to
identify whether PPG signals contains strong MA. If one ap-
proach can achieve a satisfactory accuracy for HR monitoring
using PPG signals containing strong MA, it is robust to strong
MA, indicating a good performance of this approach.

In order to identify MA intensity in one recording, namely,
to identify whether MA in one recording is very strong, the
proportion of time windows identified as being very strong
in one recording is calculated. The proportion is denoted by
Intensity and calculated by the following equation:

Intensity =
No

To
, (15)

where No denotes the number of time windows identified
as being very strong by the condition expressed in the next
equation, and To denotes total number of time windows in one
recording. The value of Intensity is between 0 and 1. The
larger the value of Intensity is, the stronger the MA in one
recording is.

Table I lists the comparison of six data sets (Running,
Beckoning, Swing Arm, Elliptical Trainer, Deep Keen Squat
and Mixture) in terms of Intensity. For the six data sets,
the averages of Intensitys of all recordings were 0.35, 0.22,
0.43, 0.54, 0.57 and 0.21 respectively. From the results we can
see that the MA in Elliptical Trainer and Deep Keen Squat
are more strong than the MA in Running, Fortune cat and
Swing Arm. The results indicates that MA elimination and
HR estimation on the data sets of Elliptical Trainer and Deep
Keen Squat are more challenging than those of the data sets
of Running, Beckoning and Swing Arm.

Note that, to obtain No in equation (15) for one recording,
we should design one condition to identify whether the MA in
one time window is strong or not. By comparing the spectra of
both PPG signals with very strong MA and PPG signals with
not strong MA, we observed that the spectrum of the former
usually has more spectral peaks than the spectrum of the
latter, and also obtained that the distance between the highest
peak and the true peak associated with HR (calculated by the
simultaneously ECG signal) in the former is usually farther
than the distance in the latter. Based on the observations, one
condition used to calculate No in equation (15) is defined as
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TABLE I: The comparison of six data sets in terms of Intensity. The larger the value of Intensity is, the stronger the
MA in one recording is. This table shows that Elliptical Trainer and Deep Keen Squat have more strong MA than Running,
Beckoning, Swing Arm and Mixture.

Data sets

Intensity Subject
Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Sub.7 Sub.8 Sub.9 Sub.10 Sub.11 Sub.12 Ave

Running 0.64 0.78 0.62 0.15 0.04 0.12 0.00 0.23 0.00 0.71 0.25 0.63 0.35
Beckoning 0.23 0.30 0.21 0.32 0.17 0.20 0.19 0.18 0.15 - - - 0.22
Swing Arm 0.04 0.56 0.35 0.51 0.19 0.34 0.30 0.79 0.79 - - - 0.43

Elliptical Trainer 0.18 0.06 0.74 0.62 0.74 0.74 0.60 0.42 0.75 - - - 0.54
Deep Keen Squat 0.57 0.77 0.67 0.75 0.30 0.78 0.51 0.68 0.10 - - - 0.57

Mixture 0.51 0.13 0.05 0.16 - - - - - - - - 0.21

n <= σ1 & d <= σ2, (16)

where n denotes the number of spectral peaks in the spectrum
of PPG signal in one time window, d denotes the distance
between the highest peak and the true peak associated with
HR, and σ1 and σ2 denote two small positive numbers being
3 and 2 in our experiments. The process of using (16) to
calculate No is: set the initial value of No to 0; if MA in
one time window is identified as being very strong by (16),
No = No + 1, otherwise No would not change.

2) The performance indexes for HR monitoring:
To evaluate the performance of our proposed HR monitoring

approach, the simultaneous ECG signal was used to calculate
the ground-truth. Using the ground-truth, two performance
indexes used in [3] were exploited. One was the average
absolute error defined as:

Error =
1

W̃

W̃∑
i=1

|HRest(i)−HRtrue(i)|, (17)

where HRtrue represents the ground truth of HR in the i-th
time window, HRest denotes the estimated HR values, and
W̃ denotes the total number of time windows.

The second one was the Bland-Altman plot used to verify
agreement between the ground-truth of HR and the estimated
HR values. In the plot, the horizontal axis represents the
average of two measures (the ground-truth and the estimates),
and the vertical axis represents the difference between the two
measurements, namely, the difference of the estimates and the
ground-truth. The Limit of Agreement (LOA) expressed by
[µ− 1.96σ, µ+ 1.96σ] was also calculated here, where µ is
the average of the differences between the estimates and the
ground-truth, and σ is the standard deviation of the differences.
In this range, 95% of all differences are inside.

V. EXPERIMENTS

In this simulation, we evaluated the performance of HR
estimation for six data sets of Running, Beckoning, Swing Arm,
Elliptical Trainer, Deep Keen Squat and Mixture, respectively,
which were recorded during six motions of walking, fast
running, beckoning, swing arm, elliptical trainer and deep keen
bend. In the part of dictionary learning, the PPG dictionaries
and the MA dictionaries corresponding to the motions in
the six data sets were learned by MOD [28], separately. To
obtain the training data used for dictionary learning and human

motion recognition, the first five data sets (Running, Beckon-
ing, Swing Arm, Elliptical Trainer,Deep Keen Squat) adopt
the leave-one-subject-out method, which is chosen because
it resembles the real world situation [29]. In the real world
situation, one method is trained by the data from all the
available subjects, and then the method will be tested on new
subjects whose data did not exist in the data during training. In
the method of leave-one-subject-out, each time the data from
one of the subjects are used as testing signals, and the data
from the remaining subjects are used as training signals. Note
that, for the data set of Mixture, training data are obtained by
another way, instead of the method of leave-one-subject-out.
Specifically, the data in the other five data sets are used as
training data, and the data in Mixture are tested. When testing
the performance on Mixture, this way is similar to the real
world situation where the proposed method is trained by the
data from many motions, and then the proposed method will
be tested on a mixture of trained motions.

First, we present the efficacy of sparse representation (SR)-
based MA elimination. Fig. 5 shows the elimination of MA
caused by three different motions: swing arm, elliptical trainer
and deep keen bend. In Fig. 5(a), (or Fig. 5(b), or Fig. 5(c)),
from the spectrum of raw PPG we can see that the spectral
peak associated with HR is not prominent due to the effect
of MA. In contrast, the spectrum of PPG after SR-based MA
elimination clearly presents the spectral peak associated with
HR. The experiment indicates that SR-based MA elimination
can eliminate MA caused by three different motions (swing
arm, elliptical trainer and deep keen bend), making the spectral
peak associated with HR more prominent, which can help to
obtain a more accurate HR value.

We then present the results of HR monitoring for some
state-of-the-art HR monitoring approaches. Table II lists the
comparison of performances of some state-of-the-art HR mon-
itoring approaches (RandomForest [12], temko [17], TROIKA
[3], JOSS [15] and EEMD [14]) in terms of Error on six
data sets. Averaged across all the recordings in six data sets,
Error of the proposed approach was 2.40 ± 1.30 BPM.
These results show that the proposed approach can achieve
satisfactory accuracy on all six data sets, even on the two
challenging data sets: Elliptical Trainer and Deep Keen Squat.

Moreover, from Table II we can see that, RandomForest [12]
and temko [17] can achieve satisfactory accuracy on the data
sets of Running, Beckoning, Swing Arm and Mixture, whereas
they can not work well on two challenging data sets: Elliptical
Trainer and Deep Keen Squat. For TROIKA [3], JOSS [15]
and EEMD [14], they can work well on Running, whereas
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they did not always work well on the other five data sets.
In contrast, the proposed approach can achieve satisfactory
performance on all the six data sets. The results means that
the proposed approach is more robust than the other five
approaches for different motions in the six data sets. Further,
we can see that the standard deviation (std) of the proposed
method (1.30 BPM) is smaller than those of the other five
methods: 7.12 BPM for RandomForest [12], 9.73 BPM for
temko [17], 10.82 BPM for TROIKA [3], 15.97 BPM for JOSS
[15] and 19.36 BPM for EEMD [14]. The results again indicate
that the proposed approach is more robust than the other five
approaches for different motions in the six data sets.

In the table, for the performances of the other five methods,
we found that there are some outliers, such as 70.18 in
TROIKA [3]. Considering the Errors without outliers larger
than 15 BPM, the average Errors on all the recordings
for the five methods are 3.25 BPM, 3.95 BPM, 3.52 BPM,
4.94 BPM and 2.95 BPM. If some outliers in the other five
methods are removed, we also remove the corresponding errors
in the proposed method. Since the outliers in the other five
methods are different, the proposed method removes different
errors, obtaining five different average Errors: 2.35 BPM,
2.27 BPM, 2.40 BPM, 2.19 BPM and 2.07 BPM. The results
show that the performance of the proposed method is still
better than that of the other five methods, even though the
outliers have been removed.

To better compare the methods in Table II, t-test is adopted
to test whether the estimation errors of the proposed method
are significantly different from those of the other five methods.
Here we consider average Errors without outliers larger than
15 BPM. Based on t-test, the estimation errors of the proposed
method was significantly different from those of the other five
methods at the significant level α=0.01. The p values were
7.99×10−31 for the proposed method and randomForest [12],
2.22× 10−6 for the proposed method and temko [17], 1.61×
10−73 for the proposed method and TROIKA [3], 6.86×10−76

for the proposed method and JOSS [15], and 7.21×10−23 for
the proposed method and EEMD [14].

To further show the performance of the proposed approach,
Fig. 6 gives the Bland-Altman plot. In the figure, the absolute
value of µ for six data sets were 0.52 BPM, 0.46 BPM,
0.29 BPM, 0.88 BPM, 0.23 BPM and 0.09 BPM. From the
results we can see that µ in the six data sets are all close
to zero. We also can see that most of the points are close
to µ, which means that the estimates are close to the ground
truth. The results mean that the proposed approach can achieve
satisfactory accuracy on all six data sets, indicating that it is
robust to different MAs caused by different motions and is
robust to strong MAs in the data sets of Elliptical Trainer
and Deep Keen Squat. This figure indicates a good estimation
performance of the proposed approach.

Fig. 6 can also indicate the range of HR where MA is very
strong. For example, from Fig. 6(e) we can see that large
errors (outside the red line) occur frequently in a low HR
range. This indicates that, for Deep Keen Squat in Fig.6(e),
the proposed method made large errors in a low HR range.
This phenomenon may indicate that MA is very strong in a
low HR range for Deep Keen Squat.
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(a) Swing arm.
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(b) Elliptical trainer.
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(c) Deep keen bend.

Fig. 5: Experiments showing the benefit of SR-based MA
elimination using PPG signal segments during three motions:
swing arm, elliptical trainer and deep keen bend. The figure
shows simultaneously recorded ECG and its spectrum (calcu-
lated by Periodogram), simultaneously recorded raw PPG and
its spectrum, and PPG after SR-based MA elimination and its
spectrum. The red circles indicate the spectral peak associated
with HR calculated from simultaneously recorded ECG.

VI. DISCUSSIONS

In this paper, we focus on some common quasi-periodic
motions that could be modeled. Though quasi-periodic mo-
tions are a specific subset of motions, eliminating MA caused
by quasi-periodic motions are still challenging, because quasi-
periodic motions may be detected as a HR component falsely
and thus may result in inaccurate estimation of HR.
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TABLE II: The comparison of HR estimation performances of some HR monitoring approaches (the proposed approach,
RandomForest [12], temko [17], TROIKA [3], JOSS [15] and EEMD [14]) in terms of Error on six data sets: Running,
Beckoning, Swing Arm, Elliptical Trainer, Deep Keen Squat and Mixture (a mixture of beckoning, swing arm and deep keen
bend).

Data Sets
Subject

Error Approaches
Proposed RandomForest[12] temko[17] TROIKA[3] JOSS[15] EEMD[14]

Running [3]

Sub.1 1.94 1.61 1.25 2.87 1.33 2.06
Sub.2 2.88 1.39 1.41 2.75 1.75 3.59
Sub.3 0.98 0.73 0.71 1.91 1.47 0.92
Sub.4 1.54 1.48 0.97 2.25 1.48 1.54
Sub.5 1.11 0.77 0.75 1.69 0.69 0.97
Sub.6 1.90 1.34 0.92 3.16 1.32 1.64
Sub.7 0.67 0.59 0.65 1.72 0.71 2.25
Sub.8 0.96 0.63 0.97 1.83 0.56 0.63
Sub.9 0.60 0.57 0.55 1.58 0.49 0.62
Sub.10 6.58 3.50 2.06 4.00 3.81 4.62
Sub.11 2.07 1.07 1.03 1.96 0.78 1.30
Sub.12 1.93 1.04 0.99 3.33 1.04 1.80

Average in Running
(mean±std) 1.93 ± 1.61 1.23 ± 0.80 1.02 ± 1.25 2.42 ± 0.78 1.28 ± 2.61 1.83 ± 1.21

Beckoning

Sub.1 2.13 2.87 2.20 4.07 17.44 2.04
Sub.2 1.71 3.80 4.80 2.65 22.60 1.67
Sub.3 1.97 3.51 2.81 2.81 4.87 2.40
Sub.4 1.57 2.28 3.42 3.93 32.10 23.03
Sub.5 2.01 3.23 1.62 70.18 4.75 3.63
Sub.6 2.66 2.35 2.35 3.81 25.59 2.82
Sub.7 2.73 3.67 2.59 2.72 8.21 4.26
Sub.8 2.30 5.86 3.12 2.89 3.59 2.30
Sub.9 1.59 2.36 1.84 2.49 5.31 1.88

Average in Beckoning
(mean±std) 2.08 ± 0.43 3.33 ± 1.12 2.75 ± 0.96 10.62 ± 22.34 13.83 ± 10.80 4.89 ± 6.85

Swing Arm

Sub.1 1.57 1.56 1.66 2.65 6.76 2.56
Sub.2 1.49 2.51 8.59 3.46 19.00 25.58
Sub.3 3.33 3.00 4.85 4.37 10.04 33.20
Sub.4 1.55 1.67 1.78 3.96 3.24 37.37
Sub.5 3.00 2.33 1.78 3.67 31.11 2.94
Sub.6 2.48 1.81 1.70 2.70 2.68 1.50
Sub.7 2.80 2.30 1.55 3.86 9.69 3.15
Sub.8 3.52 5.09 13.77 4.86 19.12 37.97
Sub.9 3.99 4.25 14.15 11.50 11.11 29.08

Average in Swing Arm
(mean±std) 2.64 ± 0.93 2.72 ± 1.21 5.54 ± 5.31 4.56 ± 2.70 12.53 ± 9.11 19.26 ± 16.31

Elliptical Trainer

Sub.1 1.31 4.75 1.53 2.65 3.31 3.07
Sub.2 2.18 1.38 1.25 3.28 1.60 2.81
Sub.3 2.91 2.09 33.40 42.52 41.33 42.76
Sub.4 5.42 1.27 3.25 5.73 20.77 9.52
Sub.5 6.38 14.56 45.47 4.59 40.88 58.81
Sub.6 1.39 3.40 4.33 2.58 11.83 1.65
Sub.7 3.78 35.63 2.83 13.64 7.16 3.18
Sub.8 1.21 0.86 1.30 2.21 3.28 11.24
Sub.9 1.40 1.88 2.03 3.10 13.25 2.89

Average in Elliptical Trainer
(mean±std) 2.89 ± 1.93 7.31 ± 11.44 10.60 ± 16.65 8.92 ± 13.09 15.93 ± 15.48 15.10 ± 20.89

Deep Keen Squat

Sub.1 1.83 3.31 2.29 2.49 2.94 44.44
Sub.2 2.75 2.63 2.23 2.89 74.73 73.08
Sub.3 3.42 36.56 1.91 3.88 11.75 53.31
Sub.4 2.75 14.28 31.99 3.90 7.44 25.81
Sub.5 1.37 1.96 1.55 3.12 15.43 2.66
Sub.6 3.89 5.23 31.50 3.90 4.59 51.99
Sub.7 3.14 8.74 21.02 2.58 4.72 59.27
Sub.8 3.74 14.26 16.73 5.66 70.91 27.03
Sub.9 1.08 1.46 3.27 1.97 4.03 4.35

Average in Deep Keen Squat
(mean±std) 2.66 ± 1.02 9.83 ± 11.19 12.50 ± 13.03 3.38 ± 1.10 21.82 ± 29.13 37.99 ± 24.51

Mixture

Sub.1 4.12 3.52 4.29 5.04 9.57 16.26
Sub.2 2.00 1.90 1.84 2.39 2.88 2.22
Sub.3 1.36 3.75 1.75 2.22 2.78 1.54
Sub.4 1.92 2.08 2.35 2.55 1.97 8.02

Average in Mixture
(mean±std) 2.35 ± 1.21 2.81 ± 0.96 2.56 ± 1.19 3.05 ± 1.33 4.30 ± 3.53 17.40 ± 23.41

Average of all the subjects
in all six data sets

(mean±std)
2.40 ± 1.30 4.51 ± 7.12 5.86 ± 9.73 5.55 ± 10.82 11.72 ± 15.97 14.33 ± 19.36
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(a) Running.
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(b) Beckoning.
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(c) Swing Arm.
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(d) Elliptical Trainer.
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(e) Deep Keen Squat.
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(f) Mixture.

Fig. 6: The Bland-Altman plot of the estimates of our proposed approach on the six data sets. In the figure, Mean and SD
denote µ and σ, respectively.

As shown in the experiments, the proposed method can
work well for many different quasi-periodic motions that have
been trained. For one motion that has not been trained, if
the motion can be divided into many movements, one scheme
depending on motion decomposition and movements compar-
ison could be adopted. Before the scheme, it is necessary to
learn movements as many as possible in training stage. The
scheme consists of two steps: first, one can divide an untrained
quasi-periodic motion into some specific movements (motion
decomposition); then one can eliminate MA caused by these
specific movements using the dictionaries corresponding to the
trained movements which are most similar to these specific
movements (movements comparison).

Though the paper focuses on quasi-periodic motions, the
paper can be extended into dealing with aperiodic motions,
such as shake hands, stretch, push, boxing, which have been
considered by many prior studies, such as [12], [17], [39],
[40], [41]. In future works, we would like to investigate HR
monitoring during aperiodic motions. If one aperiodic motion
can be divided into many specific movements associated with
arms, one scheme depending on motion decomposition and
movements comparison can be adopted. The scheme is similar
with the scheme when encountering certain untrained quasi-
periodic motion. Before the scheme, one can lean as many
movements as possible in advance. The scheme consists of
two steps: first, one can divide the aperiodic motion into
some specific movements (motion decomposition); then one
can eliminate MA caused by these specific movements using
the dictionaries corresponding to the trained movements which
are most similar to these specific movements (movements
comparison).

VII. CONCLUSION

It is extremely difficult to monitor HR via wrist-type PPG
for different types of intensive physical exercises in the real
world which includes all kinds of strong quasi-periodic mo-
tions, because different quasi-periodic strong motions could
cause very strong and complex MA. To alleviate the prob-
lem, this study proposed to use dictionary learning-based
sparse presentation, which has the ability to design differ-
ent dictionaries to represent PPG signals and different MAs
caused by different strong motions, and thereby improving
denoising performance. Experiments on different kinds of
quasi-periodic motions demonstrated that the proposed HR
monitoring approach is more robust than some state-of-the-
art HR monitoring approaches, indicating the potential of the
proposed approach in wearable sensors for health monitoring
and fitness tracking.
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